
 
 

 

 

 
 

ABSTRACT 

           Background and objectives: Developing scaffolds is important for tissue 

engineering and repairing damaged tissues. The present study aimed to investigate effects of 

pre-incubation of an electrospun silk fibroin scaffold in complete and serum-free media on 

proliferation and survival of cells seeded on the scaffold.  

           Methods: After removing sericin from the silk cocoon and preparing the fibroin 

solution (3% w/v), the electrospun silk fibroin scaffold was fabricated and its morphology 

was evaluated by scanning electron microscopy. The scaffolds were pre-incubated in 

complete and serum-free Dulbecco's Modified Eagle media for one hour (short-term) and 10 

days (long-term), and the hydrophilicity of scaffolds was evaluated by measuring the water 

contact angle. Rat bone marrow mesenchymal stem cells were seeded onto the scaffolds, and 

cell survival and genomic DNA concentration were evaluated after 21 days.  

           Results: The short-time pre-incubation of electrospun silk fibroin scaffolds in the 

complete medium increased the proliferation of seeded cells because of serum protein 

adsorption. In addition, long-term pre-incubation of the scaffolds in the complete and serum-

free media increased cell proliferation due to the increased hydrophilicity of the scaffold 

(p<0.05). However, only long-term pre-incubation of the scaffolds in the complete medium 

had a significant effect on cell survival. 

           Conclusion: The results demonstrated that long-term pre-incubation of the scaffolds 

in the complete medium have more profound positive effects on cell survival and 

proliferation compared to short-term pre-incubation. 

           Keywords: Tissue Culture Techniques, Blood Proteins, Culture Media Serum-Free. 
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culture medium can increase cell adhesion 

(19), and pre-incubation of synthetic three 

dimensional scaffold for more than seven days 

in culture medium increases cell proliferation 

but not cell attachment (20). 

One of the events that occur in the pre-

treatment of biomaterials in a complete culture 

medium is the change in the hydrophilicity of 

these materials and the adsorption of serum 

protein over time, which may affect cell 

attachment and proliferation. The present 

study aimed to evaluate this hypothesis by 

constructing electrospun silk fibroin scaffolds 

and then pre-incubating them in complete and 

serum-free medium for an hour (short-term) 

and 10 days (long-term). The water contact 

angle was used to evaluate the hydrophilic 

properties of pre-incubated scaffolds. The 

effect of this pre-treatment on the survival and 

proliferation of rat bone marrow mesenchymal 

cells was evaluated by MTT assay and 

genomic DNA concentration assay. 
 

MATERIALS AND METHODS 

Bombyx mori silk cocoons were obtained from 

a silk farm located in the Babol Kenar District, 

Babol, Iran. After transferring the silk cocoons 

to the laboratory and removing the larvae, 

mincing was carried out. To remove sericin 

from the cocoons, the fibers were boiled in 

sodium bicarbonate solution (0.02 M) for 30 

minutes. The samples were then washed with 

distilled water and dried at room temperature 

for 24 hours. Next, 9.3 M lithium bromide 

solution was prepared to dissolve the dried 

fibroin at 60 °C for 5 hours. The resulting 

solution was dialyzed with distilled water for 

72 hours to remove residual lithium bromide 

salts. The dialyzed fibroin solution was 

centrifuged at 4 °C for 20 minutes, frozen at -

80 °C for 24 hours, and dried (freeze-dried) 

(21). 

Silk fibroin was dissolved in formic acid to 

obtain a concentration of 3% (w/v). Then, the 

electrospinning process was performed using a 

lab-scale electrospinning machine (ES1000, 

Fnm, Iran). The process was carried out with 

an 18 cm distance of needle from the collector, 

the flow rate of 0.9 ml/hour, and the voltage of 

35 kV. Finally, an electrospun silk fibroin 

scaffold was obtained in the collector (1, 22). 

The shape  and  morphology  of  the  

fabricated   electrospun  silk  fibroin   scaffolds 

were   evaluated   using   a   scanning  electron 

INTRODUCTION 

As a promising technology, tissue engineering 

has an important role in repairing damaged 

tissues and organs using cells and scaffolds (1, 

2). Over the past decades, various methods 

have been proposed to fabricate scaffolds that 

could be utilized for tissue engineering, one of 

which is electrospinning. This simple and easy 

method uses electricity to produce nano-to-

micrometer-thick fiber structures from their 

polymeric solutions. This conversion increases 

the surface-to-volume ratio of the structure, 

thereby increasing its flexibility, strength, and 

hardness (3). These new properties improve 

the applicability of the structures for tissue 

engineering as scaffolds, just similar to an 

extracellular matrix. Electrospun scaffolds are 

a suitable option for bone, cartilage, and nerve 

tissue engineering (4). Nowadays, electrospun 

scaffolds are considered to be compatible with 

cells’ attachment and proliferation, and their 

interactions with cells have been evaluated in 

cartilage and bone tissue engineering (5, 6). 

According to literature, cells cannot directly 

attach to these substances. In other words, 

these biological structures must first adsorb 

serum or blood proteins to be biocompatible 

for the attachment (7, 8). Similar to in vivo 

conditions in which cells bind to proteins in 

the extracellular matrix, cell attachment to the 

culture surface also occurs through adhesive 

proteins in a complete culture medium (9, 10). 

Serum proteins that have different binding 

properties compete with each other to bind to 

the polymer (11). Over time, the layer 

containing the adsorbed proteins (e.g. 

albumin) is rapidly replaced by the layer 

containing the protein with a higher molecular 

weight (12, 13). After binding to the scaffold, 

the protein affects the properties of the three-

dimensional scaffold. Previous studies have 

shown that immersing three dimensional 

polymer scaffolds in fibronectin solution 

significantly increases cell adhesion (14, 15). 

On the other hand, exposure of synthetic 

scaffolds to fetal bovine serum (FBS) 

significantly reduced apoptosis (16) and some 

properties of the polymer, e.g. hydrophilicity, 

as a result of pre-incubation in the culture 

medium (17). All of these changes may be due 

to the rearrangement on the scaffold surface, 

which may be time-dependent and intensified 

with increasing incubation time of the polymer 

in the culture medium (18). Previous studies 

also showed that pre-incubation of polymer  in  
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more culture flasks. After passaging and 

replacing the culture medium, the cells were 

counted using a hemocytometer and trypan 

blue (23).  

Culture medium of the pre-incubated 

electrospun scaffolds was removed and the 

cells were added to the scaffold and incubated 

for at 37 °C for 3 hours. Then, DMEM 

medium containing 10% FBS, 100 nM 

dexamethasone, 1,000 U/ml streptomycin 

solution, 100 U/ml penicillin, 0.25 mg/ml 

amphotericin B, 1 mM sodium pyruvate, 10 

ng/ml TGF b1, 50 mg/ml ascorbic acid, 1X 

ITS3, 2 mM L-glutamine, and 40 mg/ml L-

proline was prepared to incubate the seeded 

cells for subsequent days. The culture medium 

was replaced every 2 days and incubation 

continued for 21 days (23).  

Then, survival of the cells seeded onto the 

electrospun scaffolds was assessed by MTT 

assay. For this purpose, MTT powder (5 mg) 

was dissolved in 1 ml of PBS buffer 

containing 10% FBS, and the resulting 

solution was sterilized with a 0.2 μm filter. 

Mesenchymal stem cells (100,000 cells/ml) 

were seeded onto the scaffolds for 21 days, 

and then the culture medium was replaced 

with the MTT solution (0.5 mg/ml). After 4 

hours of incubation at room temperature and in 

the dark, the MTT solution was removed and 

dimethyl sulfoxide was added. Finally, the 

adsorption rate of the prepared solution was 

read at 570 nm (24). Moreover, genomic DNA 

extraction was carried out using a DNA 

extraction kit (Yekta Tajhiz Azma, Iran) 

according to the manufacturer’s protocol. The 

scaffolds were first washed with PBS, 

transferred to a microtube, mixed with TG1 

buffer (200 μl), and vortexed with proteinase 

K solution (10 mg/ml). Several vortexing steps 

were carried out following incubation at 60 °C. 

Then, TG2 buffer and ethanol (96%) were 

added to the sample. The DNA solution was 

collected after several steps of centrifugation 

and washing. Finally, DNA concentration was 

measured by spectrophotometry (NanoDrop 

2000, Thermo Scientific,  USA) (25). 

Statistical analysis was performed with SPSS 

software (version 24). 

 Data were expressed as mean±standard 

deviation. Given that the data had one variable 

in several groups, one-way analysis of 

variance (ANOVA) with the Tukey's test was 

used. A p-value of less than 0.05 was 

considered statistically significant.  

microscope (SEM, Philips, Netherlands) after 

coating the fibers with gold. 

The effect of pre-incubation of scaffolds (with 

the constant elasticity) in culture medium on 

the proliferation and survival of cells seeded 

on the scaffolds was evaluated. The 

electrospun silk fibroin scaffolds were placed 

in 24-well plates containing 70% ethanol for 1 

hour. The alcohol was then discarded and the 

scaffolds were washed with phosphate buffer 

saline (PBS) and subjected to UV radiation. 

After sterilizing the scaffolds, they were 

transferred to 24-cell plates containing 

complete Dulbecco's Modified Eagle Medium 

(DMEM, containing 10% FBS) and serum-free 

DMEM. The plates were incubated for 1 h and 

10 days under standard conditions. Moreover, 

a control group was not pre-incubated.  

The hydrophilicity of the pre-incubated and 

control scaffolds in the culture media was 

evaluated by measuring the water contact 

angle. After the pre-incubation, the scaffolds 

were washed with water and dried. Then, the 

water contact angle was measured in triplicates 

for each electrospun scaffold using a contact 

angle measurement system (CA-500, 

Sharifsolar, Iran). 

For isolation and culture of rat bone marrow 

mesenchymal cells, rats (28-45 days old and 

130 to 140 g) were anesthetized with 

isoflurane under sterile conditions. The rats 

were then dissected, the distal end of the femur 

and tibia were opened, and bone marrow cells 

were collected by rinsing the end with 

complete medium. The bone marrow 

mesenchymal stem cells were isolated by 

Ficoll density gradient centrifugation (1.073 

g/ml Ficoll at 1,500 rpm for 30 minutes). In 

this method, the tip of the pipet containing 

Ficoll medium was carefully placed to the 

bottom of a conical tube containing single-cell 

suspensions, and the medium was slowly 

released to isolate cells. The cells were washed 

and then cultured (5×10
6
 cells) in a flask 

containing DMEM with FBS (10 %), 

penicillin-streptomycin (100 U/ ml), 

amphotericin B (0.25/g/ml), and fibroblast 

growth factor (1 ng/ml). After 4 days of 

incubation at 37 °C with 5% carbon dioxide, 

non-adherent cells were removed by washing. 

To passage the cells, they were incubated with 

trypsin-EDTA solution (500 μl) at 37 °C for 5 

minutes and then neutralized with FBS. After 

centrifugation at 1,800-2,000 g for 5 minutes, 

the cell suspension was  transferred  to  two  or  
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reduced the contact angle (10±4 degrees). 

While pre-incubation of the electrospun 

scaffolds in serum-free medium for 1 hour had 

no significant effect on water contact angle 

(p>0.05), pre-incubation in serum-free 

medium for 10 days led to a significant 

reduction in water contact angle (58±5 

degrees). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

concentration of cells. Genomic DNA 

concentration of cells seeded onto pre-

incubated scaffolds in complete medium for 1 

hour differed significantly with that of cells 

seeded onto control scaffolds (p<0.05). 

However, pre-incubation of the scaffolds for 1 

hour in the serum-free medium had no 

significant effect on DNA concentration 

(p>0.05). On the other hand, pre-incubation  of 

 

RESULTS 

According to SEM images, the electrospun 

fibroin scaffolds with a concentration of 3% 

(w/v) had a diameter of 38 ± 12 nm (Figure 1).  

Hydrophilicity of the scaffolds 

As shown in figure 2, the highest water contact 

angle was obtained in control scaffolds (91±14 

degrees). On  the  other  hand, incubation of 

the scaffolds in complete medium for  10  days 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell viability 

A significant difference in cell viability 

percentage was observed after 10 days of pre-

incubation of the scaffolds in complete 

medium (Figure 3). 

Genomic DNA concentration 

According to figure 4, short-term and long-

term pre-incubation  of electrospun scaffolds 

in the  complete  and   serum-free   media   had  

a  significant  effect   on   the   genomic   DNA 

 

 
Figure 1- SEM images of an electrospun fibroin scaffold structure taken under 15 kx (a) and 150 kx (b) 

magnifications. 

 

 
Figure 2- Comparison of water contact angle of untreated scaffolds as well as those treated with serum-containing medium (MCS) 

and serum-free medium (SFM) for an hour and 10 days. The letters a, b and d indicate significant differences between groups 

(p<0.05). 
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concentration compared to the control group 

(p<0.05). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

seeded onto control scaffolds (p<0.05). 

However, pre-incubation of the scaffolds for 1 

hour in the serum-free medium had no 

significant effect on DNA concentration 

(p>0.05). On the other hand, pre-incubation of 

the scaffolds in the complete and serum-free 

media for 10 days significantly increased DNA 

concentration compared to the control group 

(p<0.05). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

engineering, among which natural silk is a 

favorable option in the field of cartilage 

formation, due to its high mechanical strength, 

flexibility, biocompatibility, and potential in 

repairing damaged cartilage (26). Moreover, 

fibroin materials have a slow and controllable 

biodegradability as well as low 

immunogenicity, making them suitable for in 

vivo studies (23). In the present study, 3% 

(w/v) fibroin concentration was used to 

fabricate the scaffold. Our previous study 

showed that electrospun fibroin scaffolds 

fabricated from 3% (w/v) fibrin solution had 

the best effect on growth and differentiation of 

rat bone marrow mesenchymal stem cells to 

chondrocytes (27). In this study, bone  marrow 

the scaffolds in the complete and serum-free 

media for 10 days significantly increased DNA  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genomic DNA concentration 

According to figure 4, short-term and long-

term pre-incubation of electrospun scaffolds in 

the complete and serum-free media had a 

significant effect on the genomic DNA 

concentration of cells. Genomic DNA 

concentration of cells seeded onto pre- 

incubated scaffolds in complete medium for 1 

hour differed  significantly  with  that  of  cells 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION  

The present study showed that short-term pre-

incubation of the electrospun silk fibroin 

scaffold in complete or serum-free media did 

not have a significant effect on water contact 

angle, while long-term pre-incubation in both 

culture media significantly reduced the water 

contact angle. Moreover, short-term pre-

incubation in complete medium and long-term 

pre-incubation in both complete and serum-

free media significantly increased genomic 

DNA concentration. This study aimed to 

investigate impact of long-term and short-term 

pre-incubation of an electrospun silk fibroin 

scaffold with complete and serum-free media. 

Various synthetic  and  natural  polymers  have 

been   used   to   produce   scaffolds   in   tissue  

 

Figure 3-The percentage of viable cells seeded onto pre-incubated and control scaffolds in the medium 

containing serum (MCS) and serum-free medium (SFM) after 1 hour and 10 days. The same letters indicate 

no significant difference between groups (p> 0.05). 

 

 

 

Figure 4- The concentration of genomic DNA after pre-incubation of the scaffolds in complete culture 

medium (MCS) and serum-free medium (SFM) for 1 hour and 10 days. The same letters indicate no 

significant difference between the groups (p> 0.05). 
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scaffold, but this difference between pre-

incubated scaffolds for 1 and 7 days was not 

significant (20). In other words, when the 

scaffolds are incubated in the culture medium 

for more than one day, the amount of protein 

adsorption does not change. Chen et al. (2008) 

showed that pre-incubation of a glass surface 

(non-degradable and non-absorbable) in a 

culture medium for 7 days did not increase cell 

attachment (19). Based on the results obtained 

from the present study, it seems that protein 

adsorption in short-term pre-incubation (1 

hour) led to an increase in DNA concentration, 

while long-term pre-incubation of the 

electrospun scaffolds in culture medium 

increased hydrophilicity in terms of water 

contact angle, which affects cell proliferation 

and adhesion. These results are consistent with 

findings of previous studies (29, 30). In a 

similar study, Amirikia et al. (2017) 

investigated the effect of long-term pre-

incubation of three dimensional silk fibroin 

scaffolds in the complete medium on cell 

attachment and proliferation (17). In the 

present study, the results showed that only pre-

treatment of scaffolds in complete medium for 

10 days could significant change cell survival. 

 

CONCLUSION  

The findings indicate that short-term and long-

term pre-incubation of electrospun fibroin 

scaffolds with constant elasticity in the 

complete and serum-free media can increase 

protein adsorption and scaffolds’ 

hydrophilicity. Furthermore, long-term pre-

incubation in the complete medium had the 

most positive effect on cell survival and 

proliferation. These findings have important 

implications for seeding cells onto scaffolds 

for tissue engineering. 
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was used as a source of mesenchymal stem 

cells because this organ is the best source for 

supplying stem cells to differentiate into 

chondrocytes (28). In the presence of 

dexamethasone and TGF-beta, bone marrow-

derived stem cells easily differentiate into 

chondrocytes, and our recent study confirmed 

the differentiation of these cells on electrospun 

fibroin scaffolds (27). 

In the present study, it was hypothesized that 

exposure of electrospun fibrin scaffolds to 

complete medium for various periods can 

affect protein adsorption by the scaffolds, 

thereby influencing cell proliferation and 

survival. The adsorption of protein by 

biomaterials is key to a biological response to 

these substances. In tissue engineering, serum 

proteins adsorption by scaffolds play an 

important role in determining the response of 

cells seeded on the scaffold (20).  

When biodegradable materials (e.g. silk 

fibroin) are exposed to a culture medium, 

several phenomena can alter the properties of 

the biomaterial. Adsorption of water by the 

scaffold and its swelling and surface 

adsorption of protein can affect the behaviors 

of seeded cells (29). The present study showed 

that the hydrophilicity of fibroin scaffold 

increases (decreasing water contact angle) 

with increasing pre-incubation time. Although 

there was no significant difference between the 

hydrophilicity of scaffolds treated with 

complete and serum-free medium for an hour, 

this difference was significant after long-term 

pre-incubation. DNA concentration was used 

for quantitative assessment of cell attachment 

to the scaffold because the amount of DNA is 

directly proportional to the number of cells 

(20). Although pre-incubation of the scaffolds  

in serum-free medium for an hour did not 

notably change DNA concentration compared 

to the control scaffold, pre-incubation for 1 

hour in the complete medium significantly 

increased DNA concentration. On the other 

hand, long-term pre-incubation of the scaffolds 

in complete and serum-free media 

significantly increased DNA concentration 

compared to the control scaffolds. 

A previous study showed that pre-incubation 

of sponge polycaprolactone scaffolds in 

culture medium for various periods could 

significantly alter DNA concentration. In 

addition, pre-incubation of scaffolds for 5 

minutes and 1 day had  a  significant  effect  

on the  amount  of  protein  adsorption  by   the 
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